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PREFACE.

The more precise definitions and more rigorous methods of

demonstration developed by modern mathematics are looked

upon by the mass of gymnasium professors as abstruse and

excessively abstract, and accordingly as of importance only

for the small circle of specialists. With a view to counteract-

ing this tendency it gave me pleasure to set forth last summer

in a brief course of lectures before a larger audience than

usual what modern science has to say regarding the possibility

of elementary geometric constructions. Some time before, I

had had occasion to present a sketch of these lectures in an

Easter vacation course at Göttingen. The audience seemed

to take great interest in them, and this impression has been

confirmed by the experience of the summer semester. I ven-

ture therefore to present a short exposition of my lectures to

the Association for the Advancement of the Teaching of Math-

ematics and the Natural Sciences, for the meeting to be held at

Göttingen. This exposition has been prepared by Oberlehrer

Tägert, of Ems, who attended the vacation course just men-

tioned. He also had at his disposal the lecture notes written

out under my supervision by several of my summer semester

students. I hope that this unpretending little book may con-

tribute to promote the useful work of the association.

F. KLEIN.
Göttingen, Easter, 1895.





TRANSLATORS' PREFACE.

At the Göttingen meeting of the German Association for

the Advancement of the Teaching of Mathematics and the

Natural Sciences, Professor Felix Klein presented a discus-

sion of the three famous geometric problems of antiquity,

— the duplication of the cube, the trisection of an angle,

and the quadrature of the circle, as viewed in the light of

modern research.

This was done with the avowed purpose of bringing the

study of mathematics in the university into closer touch with

the work of the gymnasium. That Professor Klein is likely

to succeed in this effort is shown by the favorable reception

accorded his lectures by the association, the uniform commen-

dation of the educational journals, and the fact that transla-

tions into French and Italian have already appeared.

The treatment of the subject is elementary, not even a

knowledge of the differential and integral calculus being

required. Among the questions answered are such as these :

Under what circumstances is a geometric consjb*tation pos-

sible ? By what means can it be effectedTvVhat^are tran-

scendental numbers? How can we prove that e and ir are

transcendental ?

With the belief that an English presentation of so impor-

tant a work would appeal to many unable to read the original,
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Professor Klein's consent to a translation was sought and

readily secured.

In its preparation the authors have also made free use of

the French translation by Professor J. Griess, of Algiers,

following its modifications where it seemed advisable.

They desire further to thank Professor Ziwet for assist-

ance in improving the translation and in reading the proof-

sheets.

August, 1897.

W. W. BEMAN.

D. E. SMITH.
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INTRODUCTION.

This course of lectures is due to the desire on my part to

bring the study of mathematics in the university into closer

touch with the needs of the secondary schools. -Still it is not

intended for beginners, since the matters under discussion are

treated from a higher standpoint than that of the schools.

On the other hand, it presupposes but little preliminary work,

only the elements of analysis being required, as, for example,

in the development of the exponential function into a series.

We propose to treat of geometrical constructions, and our

object will not be so much .to find the solution suited to each

case as to determine the possibility or impossibility of a

solution.

Three problems, the object of much research in ancient

times, will prove to be of special interest. They are

1. The problem of the duplication of the cube (also called

the Delian problem).

2. The trisection of an arbitrary angle.

3. The quadrature of the circle, i.e., the construction of ir.

In all these problems the ancients sought in vain for a

solution with straight edge and compasses, and the celebrity

of these problems is due chiefly to the fact that their solution

seemed to demand the use of appliances of a higher order.

In fact, we propose to show that a solution by the use of

straight edge and compasses is impossible.
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The impossibility of the solution of the third problem was

demonstrated only very recently. That of the first and second

is implicitly involved in the Galois theory as presented to-day

in treatises on higher algebra. On the other hand, we find

no explicit demonstration in elementary form unless it be in

Petersen's text-books, works which are also noteworthy in

other respects.

At the outset we must insist upon the difference between

practical and theoretical constructions. For example, if we
need a divided circle as a measuring instrument, we construct

it simply on trial. Theoretically, in earlier times, it was

possible (i.e., by the use of straight edge. and compasses) only

to divide the circle into a number of parts represented by

2n, 3, and 5, and their products. Gauss added other cases

by showing the possibility of the division into parts where

p is a prime number of the form p= 2^ -\- 1, and the impos-

sibility for all other numbers. No practical advantage is

derived from these results; the significance of Gauss's de-

velopments is purely theoretical. The same is true of all the

discussions of the present course.

Our fundamental problem may be stated : What geometrical

constructions are, and ivhat are not, theoretically possible ? To

define sharply the meaning of the word " construction," we

must designate the instruments which we propose to use in

each case. We shall consider

1. Straight edge and compasses,

2. Compasses alone,

3. Straight edge alone,

4. Other instruments used in connection with straight edge

and compasses.

The singular thing is that elementary geometry furnishes

no answer to the question. We must fall back upon algebra

and the higher analysis. The question then arises : How
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shall we use the language of these sciences to express the

employment of straight edge and compasses ? This new-

method of attack is rendered necessary because elementary

geometry possesses no general method, no algorithm, as do

the last two sciences.

In analysis we have first rational operations : addition,

subtraction, multiplication, and division. These operations

can be directly effected geometrically upon two given seg-

ments by the aid of proportions, if, in the case of multiplica-

tion and division, we introduce an auxiliary unit-segment.

Further, there are irrational operations, subdivided into

algebraic and transcendental. The simplest algebraic opera-

tions are the extraction of square and higher roots, and the

solution of algebraic equations not solvable by radicals, such

as those of the fifth and higher degrees. As we know how to

construct Vab, rational operations in general, and irrational

operations involving only square roots, can be constructed.

On the other hand, every individual geometrical construction

which can be reduced to the intersection of two straight

lines, a straight line and a circle, or two circles, is equivalent

to a rational operation or the extraction of a square root. In

the higher irrational operations the construction is therefore

impossible, unless we can find a tvay of effecting it by the aid

of square roots. In all these constructions it is obvious that

the number of operations must be limited.

We may therefore state the following fundamental theorem :

The necessary and sufficient condition that an analytic expres-

sion can be constructed with straight edge and compasses is that

it can be derived from the known quantities by a finite number

of rational operations and square roots.

Accordingly, if we wish to show that a quantity cannot be

constructed with straight edge and compasses, we must prove

that the corresponding equation is not solvable by a finite

number of square roots.
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A fortiori the solution is impossible when the problem

has no corresponding algebraic equation. An expression

which satisfies no algebraic equation is called a transcenden-

tal number. This case occurs, as we shall show, with the

number it.



PART I.

THE POSSIBILITY OF THE CONSTRUCTION OF ALGEBRAIC

EXPRESSIONS.

CHAPTER I.

Algebraic Equations Solvable by Square Roots.

The following propositions taken from the theory of alge-

braic equations are probably known to the reader, yet to

secure greater clearness of view we shall give brief demon-

strations.

If x, the quantity to be constructed, depends only upon rational

expressions and square roots, it is a root of an irreducible equa-

tion f (x) = 0, whose degree is always a power of 2.

1. To get a clear idea of the structure of the quantity x,

suppose it, e.g., of the form

x = Va + VcTeT-f-Vd + Vb p_+Vq
?

Va + Vb Vr

where a, b, c, d, e, f, p, q, r are rational expressions.

2. The number of radicals one over another occurring in

any term of x is called the order of the term ; the preceding

expression contains terms of orders 0, 1, 2.

3. Let fx designate the maximum order, so that no term

can have more than //, radicals one over another.
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4. In the example x = V2 + V3 + Vö, we have three

expressions of the first order, but as it may be written

x = V2+ V3+ V2- V3,

it really depends on only two distinct expressions.

TFe shall suppose that this reduction has been made in all the

terms of x, so that among the n terms of order fx none can be

expressed rationally as a function of any other terms of order /x

or of lower order.

We shall make the same supposition regarding terms of

the order fx
— 1 or of lower order, whether these occur ex-

plicitly or implicitly. This hypothesis is obviously a very

natural one and of great importance in later discussions.

, 5. Normal Form of x.

If the expression x is a sum of terms with different denom-

inators we may reduce them to the same denominator and

thus obtain x as the quotient of two integral functions.

Suppose VQ one of the terms of x of order fx ; it can occur

in x only explicitly, since fx is the maximum order. Since,

further, the powers of VQ may be expressed as functions of

VQ and Q, which is a term of lower order, we may put

= a + b VQX_
c+-d VQ'

where a, b, c, d contain no more than n — 1 terms of order /a,

besides terms of lower order.

Multiplying both terms of the fraction by c — d VQ, VQ
disappears from the denominator, and we may write

(ac - bdQ) + (be - ad) VQ ^
c
2 - d

2

Q
TP v '

where a and ß contain no more than n — 1 terms of order tt.

For a second term of order /x we have, in a similar manner,

x =: ax + /?! VQi, etc.
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The x may, therefore, be transformed so as to contain a term

of given order p only in its numerator and there only linearly.

We observe, however, that products of terms of order ft

may occur, for a aud ß still depend upon n — 1 terms of order

ft. We may, thee, put

a= au + a12 VQi, ß= ßu + ßu VQi,

and hence

x = (au + a12 VQi) + (ft! + ß12 VQO VQ.

6. We proceed in a similar way with the different terms

of order fx
— 1, which occur explicitly and in Q, Q 1} etc., so

that each of these quantities becomes an integral linear func-

tion of the term of order p — 1 under consideration. We
then pass on to terms of lower order and finally obtain x, or

rather its terms of different orders, under the form of rational

integral linear functions of the individual radical expressions

which occur explicitly. We then say that x is reduced to

the normal form.

7. Let m be the total number of independent (4) square

roots occurring in this normal form. Giving the double sign

to these square roots and combining them in all possible ways,

we obtain a system of 2m values

which we shall call conjugate values.

We must now investigate the equation admitting these

conjugate values as roots.

8. These values are not necessarily all distinct ; thus, if

we have x = ^a + Vb + ^a — Vb,

this expression is not changed when we change the sign of

Vb.
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9. If x is an arbitrary quantity and we form the poly-

nomial
F (x) = (x — x x)

(x — x 2) . . . (x — x2m),

F (x) = is clearly an equation having as roots these con-

jugate values. It is of degree 2m, but may have equal

roots (8).

The coefficients of the polynomial F (x) arranged with respect

to x are rational.

For let us change the sign of one of the square roots ; this

will permute two roots, say xA and xA -, since the roots of

F (x) = are precisely all the conjugate values. As these

roots enter F (x) only under the form of the product

(x — xA) (x — Xy),

we merely change the order of the factors of F (x). Hence

the polynomial is not changed.

F (x) remains, then, invariable when we change the sign of

any one of the square roots ; it therefore contains only their

squares ; and hence F (x) has only rational coefficients.

10. When any one of the conjugate values satisfies a given

equation with rational coefficients, f (x) = 0, the same is true of

all the others.

f (x) is not necessarily equal to F (x), and may admit other

roots besides the x/s.

Let x x = a + ß VQ be one of the conjugate values ; VQ, a

term of order fx ; a and ß now depend only upon other terms

of order ll and terms of lower order. There must, then, be a

conjugate value

Xl '= a -y3VQ.

Let us now form the equation f (xx) = 0. f (x x) may be put

into the normal form with respect to VQ,

f(xO = A+BVQ;
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this expression can equal zero only when A and B are simul-

taneously zero. Otherwise we should have

VQ=-|r

i.e., VQ could be expressed rationally as a function of terms

of order //, and of terms of lower order contained in A and B,

which is contrary to the hypothesis of the independence of

all the square roots (4).

But we evidently have

f(Xl ') = A-BVQ;
hence if f (xx) — 0, so also f (x/) = 0. Whence the following

proposition :

If x x satisfies the equation f (x) = 0, the same is true of all

the conjugate values derived from xx by changing the signs of

the roots of order /x.

The proof for the other conjugate values is obtained in an

analogous manner. Suppose, for example, as may be done

without affecting the generality of the reasoning, that the

expression x x depends on only two terms of order fx, VQ and

VQ'. f (x x) may be reduced to the following normal form :

(a) f
(Xl)
= p -f q VQ + r VQ' + s VQ • VQ7= 0.

If xx depended on more than two terms of order p, we should

only have to add to the preceding expression a greater num-

ber of terms of analogous structure.

Equation (a) is possible only when we have separately

(b) p = 0, q = 0, r= 0, s= 0.

Otherwise VQ and VQ' would be connected by a rational

relation, contrary to our hypothesis.

Let now VR, VR', ... be the terms of order p — 1 on

which x x depends ; they occur in p, q, r, s ; then can the

quantities p, q, r, s, in which they occur, be reduced to the
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normal form with respect to VR and VR' ; and if, for the

sake of simplicity, we take only two quantities, VR and VR',

we have

(c) p = «, + Ax VR + fx, VR' + vx V R . V R' = 0,

and three analogous equations for q, r, s.

The hypothesis, already used several times, of the inde-

pendence of the roots, furnishes the equations

(d) k = 0, A = 0, ft = 0, v= 0.

Hence equations (c) and consequently f (x) = are satisfied

when for x x we substitute the conjugate values deduced by

changing the signs of VR and VR'.

Therefore the equation f (x)=0 is also satisfied by all the

conjugate values deduced from x± by changing the signs of the

roots of order ft
— 1.

The same reasoning is applicable to the terms of order

ft
— 2, ft

— 3, . . . and our theorem is completely proved.

1 1 . We have so far considered two equations

F (x) = and f (x) = 0.

Both have rational coefficients and contain the x/s as roots.

F (x) is of degree 2m and may have multiple roots
; f (x) may

have other roots besides the x/s. We now introduce a third

equation, <£ (x) = 0, defined as the equation of lowest degree,

with rational coefficients, admitting the root Xj and conse-

quently all the Xi's (10).

12. Properties of the Equation <£ (x) = 0.

I. <f>(x)=0 is an irreducible equation, i.e., <j> (x) cannot be

resolved into two rational polynomial factors. This irreduci-

bility is due to the hypothesis that <j> (x) = is the rational

equation of lowest degree satisfied by the x^s.

For if we had

*(x)=*(x)x(*),
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then
<f>

(x x) = would require either ^ (x x) = 0, or % (
xi) = 0,

or both.. But since these equations are satisfied by all the

conjugate values (10), <f>
(x) = would not then be the equa-

tion of lowest degree satisfied by the x/s.

II.
<f>

(x) = has no multiple roots. Otherwise
<f>

(x) could

be decomposed into rational factors by the well-known meth-

ods of Algebra, and
<f>

(x) = would not be irreducible.

III.
<f>

(x) = has no other roots than the x^s. Otherwise

F (x) and
<f>

(x) would admit a highest common divisor, which

could be determined rationally. We could then decompose

<f>
(x) into rational factors, and

<f>
(x) would not be irreducible.

IV. Let M be the number of x/s which have distinct values,

and let

be these quantities. We shall then have

<t>
(x) = C (x — xj (x — x 2) . . . (x — xM).

For $ (x) = is satisfied by the quantities x
A
and it has no

multiple roots. The polynomial
<f>

(x) is then determined save

for a constant factor whose value has no effect upon
<f>

(x) = 0.

Y.
<f>

(x) = is the only irreducible equation with rational

coefficients satisfied by the x/s. For if f (x) = were another

rational irreducible equation satisfied by x ± and consequently

by the x/s, f (x) would be divisible by
<f>

(x) and therefore

would not be irreducible.

By reason of the five properties of <j> (x) = thus estab-

lished, we may designate this equation, in short, as the irre-

ducible equation satisfied by the x/s.

13. Let us now compare F (x) and
<f>

(x). These two poly-

nomials have the Xj's as their only roots, and <j> (x) has no

multiple roots. F (x) is, then, divisible by cf> (x) ; that is,

F (x) = F, (x) cf> (x).
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Fi (x) necessarily has rational coefficients, since it is the quo-

tient obtained by dividing F (x) by
<f>

(x). If Fx (x) is not a

constant it admits roots belonging to F (x) ; and admitting

one it admits all the x/s (10). Hence Fx (x) is also divisible

by
<f>

(x), and
Fx (x) = F2 (x) 4 (x).

If F2 (x) is not a constant the same reasoning still holds, the

degree of the quotient being lowered by each operation.

Hence at the end of a limited number of divisions we reach

an equation of the form

F„ _ ! (x) = Ci •

<f>
(x),

and for F (x),

F(") = C- [(«)]'.

The polynomial F (x) is then a power of the polynomial of

minimum degree <ft (x), except for a constant factor.

14. We can now determine the degree M of <£(x). F (x)

is of degree 2m ; further, it is the vth power of
<f>

(x). Hence

2m = v M.

Therefore M is also a power of 2 and we obtain the following

theorem :

The degree of the irreducible equation satisfied by an expres-

sion composed of square roots only is always a poiver of 2.

15. Since, on the other hand, there is only one irreducible

equation satisfied by all the x/s (12, V.), we have the converse

theorem

:

If an irreducible equation is not of degree 2h
, it cannot be

solved by square roots.



CHAPTER II.

The Delian Problem and the Trisection of the Angle.

1. Let us now apply the general theorem of the preceding

chapter to the Delian problem, i.e., to the problem of the

duplication of the cube. The equation of the problem is

manifestly

x
3= 2.

3,—
This is irreducible, since otherwise v2 would have a

rational value. For an equation of the third degree which is

reducible must have a rational linear factor. Further, the

degree of the equation is not of the form 2h ; hence it cannot

be solved by means of square roots, and the geometric con-

struction with straight edge and compasses is impossible.

2. Xext let us consider the more general equation

x
3= A,

A. designating a parameter which may be a complex quantity

of the form a + ib. This equation furnishes us the analyt-

ical expressions for the geometrical problems of the multi-

plication of the cube and the trisection of an arbitrary angle.

The question arises whether this equation is reducible, i.e.,

whether one of its roots can be expressed as a rational func-

tion of X. It should be remarked that the irreducibility of

an expression always depends upon the values of the quan-

tities supposed to be known. In the case x
3= 2, we were

dealing with numerical quantities, and the question was
3,—

whether V2 could have a rational numerical value. In the

equation x
3= A we ask whether a root can be represented by

a rational function of A.. In the first case, the so-called
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domain of rationality comprehends the totality of rational

numbers ; in the second, it is made up of the rational func-

tions of a parameter. If no limitation is placed upon this

parameter we see at once that no expression of the form -yjA

,

in which <j> (A.) and \p (A.) are polynomials, can satisfy our

equation. Under our hypothesis the equation is therefore

irreducible, and since its degree is not of the form 2h, it can-

not be solved by square roots.

3. Let us now restrict the variability of A. Assume

\ = r (cos
<f> + > g in

<f>) j

whence ty\=tyr Vcos
<f> + i sin

<f>.

Our problem resolves itself into two, to

~"x extract the cube root of a real number and

also that of a complex number of the form
FlG

*
lm

cos cfi + i sin <£, both numbers being regarded

as arbitrary. We shall treat these separately.

I. The roots of the equation x3= r are

Vr, e Vr, e
2 Vr,

representing by £ and e
2 the complex cube roots of unity

- 1 + i V3
2
- 1 - i V3*=-— 2

1
e = 2 *

Taking for the domain of rationality the totality of rational

functions of r, we know by the previous reasoning that the

equation x
3 = r is irreducible. Hence the problem of the

multiplication of the cube does not admit, in general, of a

construction by means of straight edge and compasses.

II. The roots of the equation

x
3= cos <£ + i sin <£

are, by De Moivre's formula,
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Xl = cos -+ i sin-, <

x2 = cos—^ f-ism^— ,

jj£

x3= cos -—
|- i sin —-—

.

•a_cJL4

J!*

Fig. 2.

These roots are represented geometrically by the vertices of

an equilateral triangle inscribed in the circle with radius

unity and center at the origin. The

figure shows that to the root x x cor-

responds the argument -^. Hence

the equation

x3= cos <j> + i sin <£

is the analytic expression of the

problem of the trisection of the

angle.

If this equation were reducible,

one, at least, of its roots could be represented as a rational

function of cos
<f>

and sin <j>, its value remaining unchanged

on substituting <£ -f- 2ir for <£. But if we effect this change

by a continuous variation of the angle
<f>,

we see that the

routs x 1? x2 , x 3 undergo a cyclic permutation. Hence no root

can be represented as a rational function of cos <£ and sin
<f>.

The equation under consideration is irreducible and therefore

cannot be solved by the aid of a finite number of square roots.

Hence the 'trisection of the angle cannot be effected with straight

edge and compasses.

This demonstration and the general theorem evidently hold

good only when <j> is an arbitrary angle ; but for certain spe-

cial values of <£ the construction may prove to be possible,

e.g., when <£ = £.



CHAPTER III.

The Division of the Circle into Equal Parts.

1. The problem of dividing a given circle into n equal

parts has come down from antiquity j for a long time we
have known the possibility of solving it when n = 2h, 3, 5, or

the product of any two or three of these numbers. In his

Disquisitiones Arithmeticae, Gauss extended this series of

numbers by showing that the division is possible for every

prime number of the form p = 2 2
-J- 1 but impossible for all

other prime numbers and their powers. If in p = 22 +

1

we make /*= and 1, we get p = 3 and 5, cases already

known to the ancients. For /i= 2we get p = 2
22 + 1 = 17,

a case completely discussed by Gauss.

For fx = 3 we get p = 2 s3 + 1 = 257, likewise a prime num-

ber. The regular polygon of 257 sides can be constructed.

Similarly for p = 4, since 22*+ 1 = 65537 is a prime number.

fi= 5, fi= 6, fi = 7 give no prime numbers. For /a= 8 no

one has found out whether we have a prime number or not.

The proof that the large numbers corresponding to //.= 5, 6, 7

are not prime has required a large expenditure of labor and

ingenuity. It is, therefore, quite possible that fx = 4 is the

last number for which a solution can be effected.

Upon the regular polygon of 257 sides Eichelot published

an extended investigation in Crelle's Journal, IX, 1832,

pp. 1-26, 146-161, 209-230, 337-356. The title of the

memoir is : De resolutione algebraica aequationis x
257= 1, sive

de divisione circuit per bisectionem anguli septies repetitam in

partes 257 inter se aequales. commentatio coronata.
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To the regular polygon of 65537 sides Professor Hermes

of Lingen devoted ten years of his life, examining with care

all the roots furnished by Gauss's method. His MSS. are

preserved in the collection of the mathematical seminary in

Göttingen. (Compare a communication of Professor Hermes

in No. 3 of the Göttinger Nachrichten for 1894.)

2. We may restrict the problem of the division of the

circle into n equal parts to the cases where n is a prime num-

ber p or a power p
a of such a number. For if n is a com-

posite number and if fx and v are factors of n, prime to each

other, we can always find integers a and b, positive or nega-

tive, such that
l = a/* + bv;

. 1 a
,
b

whence — =--f--.
[IV V [X

To divide the circle into \iv= n equal parts it is sufficient to

know how to divide it into p and v equal parts respectively.

Thus, for n = 15, we have

JL_2_3
15~~ 3 5'

3. As will appear, the division into p equal parts (p being

a prime number) is possible only when p is of the form

p = 2h+ 1. We shall next show that a prime number can

be of this form only when h = 2'x
. For this we shall make

use of Fermat's Theorem :

If p is a prime number and a an integer not divisible by p,

these numbers satisfy the congruence

ap
- 1 = + l (mod. p).

*p — 1 is not necessarily the lowest exponent which, for a

given value of a, satisfies the congruence. If s is the lowest

exponent it may be shown that s is a divisor of p — 1. In

particular, if s = p — 1 we say that a is a primitive root of p,
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and notice that for every prime number p there is a primitive

root. We shall make use of this notion further on.

Suppose, then, p a prime number such that

(1) p= 2-+ l,

and s the least integer satisfying

(2) 2s = + 1 (mod. p).

From (1) 2h < p ; from (2) 2s> p.

'.-. s>h.

(1) shows that h is the least integer satisfying the congruence

(3) 2h= - 1 (mod. p).

From (2) and (3), by division,

2 s~ h = — 1 (mod. p).

.-.(4) s-h^h, s^2h.

From (3), by squaring,

2211 = 1 (mod. p).

Comparing with (2) and observing that s is the least expo-

nent satisfying congruences of the form

2X= 1 (mod. p),

we have

(5) s^2h.
.-. s = 2h.

We have observed that s is a divisor of p — 1 = 2h ; the same

is true of h, which is, therefore, a power of 2. Hence prime

numbers of the form 2h -f- 1 are necessarily of the form

22*
-f 1.

4. This conclusion may be established otherwise. Sup-

pose that h is divisible by an odd number, so that

h = h'(2n + l);

then, by reason of the formula

x2n + 1 + l =
( x +l) (x

211 — x2n-!+ . .,— x + 1),
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p = 2h(2n+1) + l is divisible by 2h ' + 1, and hence is hot a

prime number.

5. We now reach, our fundamental proposition :

p being a prime number, the division of the circle into p equal

parts by the straight edge and compasses is impossible unless p
is of the form

p= 2*+ l = 22't + l.

Let us trace in the z-plane (z .= x + iy) a circle of radius 1.

To divide this circle into n equal parts, beginning at z = 1, is

the same as to solve the equation

z* - 1 = 0.

This equation admits the root z = 1 ; let us suppress this root

by dividing by z — 1, which is the same geometrically as to

disregard the initial point of the division. We thus obtain

the equation

zn-l _|_ zn- 2 + . . . -f z + _i = o,

which may be called the cyclotomic equation. As noticed

above, we may confine our attention to the cases where n is

a prime number or a power of a prime number. We shall

first investigate the case when n = p. The essential point of

the proof is to show that the above equation is irreducible.

For since, as we have seen, irreducible equations can only be

solved by means of square roots in finite number when their

degree is a power of 2, a division into p parts is always im-

possible when p — 1 is not equal to a power of 2, i.e., when

p =jfc 2h + 1 =£ 2^ + 1.

Thus we see why Gauss's prime numbers occupy such an

exceptional position.

6. At this point we introduce a lemma known as Gauss's

Lemma. If

F(z) = zm + Azm
- : + Bzm

- 2 +. . . + Lz+ M,
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where A, B, . . . are integers, and F(z) can be resolved into

two rational factors f (z) and cf> (z), so that

F (z) = f (z) • c£ (z) = (z-
1 + alZ

m - 1 + a2z
m'- 2 + . . .)

(zm" + /31z
m"- 1 +

/
82z-"-

2 +...),

then mnst the a's and ß's also be integers. In other

words :

If an integral expression can be resolved into rational factors

these factors must be integral expressions.

Let us suppose the a's and ß's to be fractional. In each

factor reduce all the coefficients to the least common denom-

inator. Let a and b be these common denominators.

Finally multiply both members of our equation by a b . It

takes the form

a b F(z) = fx (z) fa (z) = (a z ra ' + a^'" 1 + . . .)

(b zm"+b1z»"-
1 +...)•

The a's are integral and prime to one another, as also the b's,

since a and b are the least common denominators.

Suppose a and b different from unity and let q be a prime

divisor of a b . Further, let a
A
be the first coefficient of fx (z)

and bk the first coefficient of fa (z) not divisible by q. Let

us develop the product i1 (z) <f> 1
(z) and consider the coefficient

of z
»' + m"-i-k it will be

ai"k i
a

i_ 1bk+1 -f- a
i_ 2bk+2+ • • • "T ai+ibk_i ~r ai+2bk_ 2 -|- . .

.

According to our hypotheses, all the terms after the first are

divisible by q, but the first is not. Hence this coefficient is not

divisible by q. Now the coefficient of zm'+ m"-i- k in the first

member is divisible by a b , i.e., by q. Hence if the identity

is true it is impossible for a coefficient not divisible by q to

occur in each polynomial. The coefficients of one at least of

the polynomials are then all divisible by q. Here is another

absurdity, since we have seen that all the coefficients are
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prime to one another. Hence we cannot suppose a and b

different from 1, and consequently the a's and /3's are in-

tegral.

7. In order to show that the cyclotomic equation is irre-

ducible, it is sufficient to show by Gauss's Lemma that the

first member cannot be resolved into factors with integral

coefficients. To this end we shall employ the simple method

due to Eisenstein, in Crelle's Journal, XXXIX, p. 167, which

depends upon the substitution

z = x+ l.

We obtain

z 1 x 1 Z

All the coefficients of the expanded member except the first

ire divisible by p ; the last coefficient is always p itself, by

lypothesis a prime number. An expression of this class is

ilways irreducible.

For if this were not the case we should have

f (x+ 1) = (x
m + a^-- 1 +....+ am_! x + aJ

(xm'+b 1 x
m'- 1 +...+bm'_ 1 x + bm.),

vhere the a's and b's are integers.

Since the term of zero degree in the above expression of

(z) is p, we have ambm- = p. p being prime, one of the fac-

ors of ambm' must be unity. Suppose, then,

ara = ±p, bm»= ±l.

iquating the coefficients of the terms in x, we have

PiP!Zi)_ a b ,_i_ a b ,O am-l Dm I
amDm'-l-
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The first member and the second term of the second being

divisible by p, am_ 1 bm ' must be so also. Since bm - = ±l,
am_! is divisible by p. Equating the coefficients of the terms !

in x
2 we may show that am _ 2 is divisible by p. Similarly

we show that all of the remaining coefficients of the factor

xm + axX
111-1 + . . . + am_! x -f- am are divisible by p. But

this cannot be true of the coefficient of x
m

, which is 1.

The assumed equality is impossible and hence the cyclo-

tomic equation is irreducible when p is a prime.

8. We now consider the case where n is a power of a

prime number, say n = p
a

. We propose to show that when

p > 2 the division of the circle into p
2 equal parts is impos-

sible. The general problem will then be solved, since the

division into p
a equal parts evidently includes the division

into p
2 equal parts.

The cyclotomic equation is now

It admits as roots extraneous to the problem those which

come from the division into p equal parts, i.e., the roots of

the equation p -.

7^T = °- :

Suppressing these roots by division we obtain

zP
2 -l

as the cyclotomic equation. This may be written

zp(p-d _j_ zp(p-2) + . . . + zp 4- i. =o-.

Transforming by the substitution

z = x + l,

we have

(x + 1)p(p-D + (x + 1)p(p-2) + . . . + (x + 1)p + 1 = 0.
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The number of terms being p, the term independent of x after

development will be equal to p, and the sum will take the

form
xPCP- 1

)+ p- x (x),

where ^ (x) is a polynomial with integral coefficients whose

constant term is 1. We have just shown that such an expres-

sion is always irreducible. Consequently the new cyclotomic

equation is also irreducible.

The degree of this equation is p (p — 1). On the other

hand an irreducible equation is solvable by square roots only

when its degree is a power of 2. Hence a circle is divisible

into p
2 equal parts only when p = 2, p being assumed to be a

prime.

The same is true, as already noted, for the division into p
a

equal parts when a > 2.



CHAPTER IV.

The Construction of the Regular Polygon of 17 Sides.

1. We have just seen that the division of the circle into

equal parts by the straight edge and compasses is possible

only for the prime numbers studied by Gauss. It will now
be of interest to learn how the construction can actually be

effected.

The purpose of this chapter, then, will be to show in an

elementary way how to inscribe in the circle the regular poly-

gon of 17 sides.

Since we possess as yet no method of construction based

upon considerations purely geometrical, we must follow the

path indicated by our general discussions. We consider, first

of all, the roots of the cyclotomic equation

x
16 +x 15 +. • . +x2+x+l = 0,

and construct geometrically the expression, formed of square

roots, deduced from it.

We know that the roots can be put into the transcendental

form

and if

that

2k7T . 2k7T
e« = cos— + i sin— (k= 1, 2, . . . 16) ;

2-7T . . . 2*7T

ci = cos — + i sin
jy,

eK = «I

Geometrically, these roots are represented in the complex

plane by the vertices, different from 1, of the regular polygon

of 17 sides inscribed in a circle of radius 1, having the origin
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is center. The selection of e1 is arbitrary, but for the con-

traction it is essential to indicate some e as the point of

leparture. Having fixed upon e1? the angle corresponding to

K is k times the angle corresponding to e1} which completely

letermines eK .

2. The fundamental idea of the solution is the following :

Forming a primitive root to the modulus 17 we may arrange

he 16 roots of the equation in a cycle in a determinate order.

As already stated, a number a is said to be a primitive root

;o the modulus 17 when the congruence

a8= + 1 (mod. 17)

las for least solution s = 17 — 1 — 16. The number 3 pos-

iesses this property ; for we have

(mod. 17).

Let us then arrange the roots eK so that their indices are

he preceding remainders in order

e3> c9> e10> e13> e5> €15> ell> c16> c14> c8> c7> c4> c12» c2j «6j €1«

Notice that if r is the remainder of 3K (mod. 17), we have

3* = 17q + r,

rhence eT= e/= ex
3

.

f r' is the next remainder, we have similarly

er
.= £/+1= (*/).• =fe)».

fence in this series of roots each root is the cube of the preceding.

Gauss's method consists in decomposing this cycle into

ams containing 8, 4, 2, 1 roots respectively, corresponding

) the divisors of 16. Each of these sums is called a period.

3 X EE 3 35 EE 5 39 =14 313 =12
32= 9 36 =15 310= 8 314= 2

33= 10 37= 11 3U= 7 315= 6

34= 13 38 = 16 3^= 4 316= 1
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The periods thus obtained may be calculated successively as

roots of certain quadratic equations.

The process just outlined is only a particular case of that

employed in the general case of the division into p equal

parts. The p — 1 roots of the cyclotomic equation are cyclic-

ally arranged by means of a primitive root of p, and the

periods may be calculated as roots of certain auxiliary equa-

tions. The degree of these last depends upon the prime fac-

tors of p — 1. They are not necessarily equations of the

second degree.

The general case has, of course, been treated in detail by

Gauss in his Disquisitiones, and also by Bachmann in his

work, Die Lehrß von der Kreisteilung (Leipzig, 1872).

3. In our case of the 16 roots the periods may be formed

in the following manner : Form two periods of 8 roots by

taking in the cycle, first, the roots of even order, then those

of odd order. Designate these periods by xx and x2, and

replace each root by its index. We may then write symbol-

ically

Xl = 9 + 13 + 15 + 16 + 8 + 4+ 2 + 1,

x2
= 3 + 10 + 5 + 11 + 14 + 7 + 12 + 6.

Operating upon Xl and x2 in the same way, we form 4 periods

of 4 terms :

yi = 13 + 16+ 4+ 1,

y2= 9 + 15+ 8+ 2,

y3 = 10 + ll+ 7+ 6,

y4
= 3+ 5 + 14 + 12.

Operating in the same way upon the y's, we obtain 8 periods

of 2 terms :

z 1
= 16 + l, z5 = ll+ 6,

z2 = 13 + 4, z 6 = 10+ 7,

z3 -15 + 2, z7= 5 + 12,

z4
= 9 + 8, z 8

= 3 + 14.
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It now remains to show that these periods can be calculated

successively by the aid of square roots.

4. It is readily seen that the sum of the remainders corre-

sponding to the roots forming a period z is always equal to 17.

These roots are then er and e17_ r ;

'2ir . . . 2-7T

er= cos rjy+i sin r—

,

9 9
€r > = e17_ r

= cos (17 - r)
jy + i sin (17 — r) —

,

2tT . . 2iTT= cos r
— — i sin r—

.

Hence

er + v= 2 cos r—

.

Therefore all the periods z are real, and we readily obtain

O 27T 2-rr

zt= 2 cos—, z5 = 2 cos 6—,

z2 = 2 cos 4
j^,

z 6 = 2 cos 7 ^,

z3 = 2 cos 2
j|,

z 7
= 2 cos 5

j|,

z4 = 2cos8t^, z 8 = 2 cos 3jy.

Moreover, by definition,

Xl = Zi + z 2 + z 3 + z4,
x2 = z 5 + z 6 + z 7 -f z 8 ,

yi = zi + z2 , y2 = z 3 + z4 , y3 = z 5 + z 6 , y4 =Z 7 + Z 8 .

5. It will be necessary to determine the relative magnitude

of the different periods. For this purpose we shall employ

the following artifice : We divide the semicircle of unit radius

into 17 equal parts and denote by Si, S 2 , . . . S J7 the distances



28 FAMOUS PROBLEMS.

of the consecutive points of division A1? A2 , . . . A17 from the
j

initial point of the semicircle, S i7 being equal to the diam-

eter, i.e., equal to 2. The angle

^ 4lA 2 Ak A17 has the same measure as the

A* half of the arc AK0, which equals

\ 2/C7T TT——
. Hence

S
» = 2sin

34
= 2cOS 3T^-

That this may be identical with
k+p

2tt
a,4 2 cos h — , we must have

17
:

4h = 17

= 17 — 4h.

Giving to h the values 1, 2, 3, 4, 5, 6, 7, 8, we find for k the

values 13, 9, 5, 1, — 3, — 7, — 11, — 15. Hence

Z l
== Si3,

Z2
= Si,

Z3
:== Sg,

Z4
= Si5,

z5~ S 7 ,

z 6 — Sn,

Z 7
= S3,

Z 8 = S5 .

The figure shows that S K increases with the index ; hence the I

order of increasing magnitude of the periods z is

Z 4> Z 65 Z 5? Z 7> Z 2> Z8) Z3j Z l-

Moreover, the chord AKAK + p
subtends p divisions of the semi-

circumference and is equal to Sp ;
the triangle OA^A^ + p shows

that

K + p \ Ok -+" Op,

and a fortiori

^k + v ^k + t ~r ^p + re-

calculating the differences two and two of the periods y, we
easily find
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yi — y2 = S13 + Si — S 9 + S15 > 0,

yi — y 3 = Sis + Si + S 7 + Sn > 0,

yi — y4 = Sis + Si + S 3 — S 5 > o,

y2 — y 3 = S 9 — Sis + S 7 + Sn > 0,

y2 — y4 = S 9 — Sis + S3 — S 5 < 0,

y3 — y* = — S 7
— Sn + S3 — S 5 < 0.

y3 < y2 < y4 < yi-

Finally we obtain in a similar way

x2 < Xi.

JjTT

6. We now propose to calculate zx= 2 cos — . After mak-

ing this calculation and constructing z l5 we can easily deduce

the side of the regular polygon of 17 sides. In order to find

the quadratic equation satisfied by the periods, we proceed to

determine symmetric functions of the periods.

Associating zx with the period z2 and thus forming the

period yi, we have, first,

zi + z2 = yi.

Let us now determine z xz2 . We have

z1z2= (16 + l)-(13'+ 4),

where the symbolic product Kp represents

CK Cp &K + p*

Hence it should be represented symbolically by k -f- p, remem-

bering to subtract 17 from K-j-pas often as possible. Thus,

z1z2= 12 + 3+ 14+ 5= y4.

Therefore z1 and z2 are the roots of the quadratic equation

(0 z
2 -

yiz + y4 = 0,

whence, since z x > z2 ,

r _ yi + Vyi
2 - 4y4 _ yi- Vyi2 -4y,

Zl
— ^ ?

Z2 —



30 FAMOUS PROBLEMS.

We must now determine y x and y4 . Associating y x with the

period y2, thus forming the period x 1? and y3 with the period

y4, thus forming the period x2 , we have, first,

yi + y2 = xi."

Then,

yiy2 =(13 + 16 + 4 + l)(9 + 15 + 8 + 2).

Expanding symbolically, the second member becomes equal

to the sum of all the roots ; that is, to — 1. Therefore y x

and y2 are the roots of the equation

(,) y*-xiy -l = 0,

whence, since yx > y2,

_ Xl + Vxx2 + 4 _ Xl -VXl
2 + 4

yi- g '
y2 ~ 2

Similarly,

y3 + y4 = x 2

and

y 3y 4 =— 1.

Hence y3 and y4 are the roots of the equation

W) y
2 -x 2y-l=0;

whence, since y4 > y3 ,

_ x2 +Vx2
2 + 4 _ x2 -Vx2

2 + 4
y4- 2 ' y8 ~ 2 '

It now remains to determine x x and x2 . Since x x + x2 is

equal to the sum of all the roots,

xi + x 2 = — 1.

Further,

Xl x 2 = (13 + 16 + 4 + 1 + 9 + 15 +8 + 2)

(10 + 11 + 7 + 6 + 3 + 5 + 14 + 12).

Expanding symbolically, each root occurs 4 times, and thus

XiXa = — 4.
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Therefore xx and x2 are the roots of the quadratic

© x
2 -fx-4 = 0;

whence, since x 1 > x2,

_ -l + VTf _ - 1 - Vl7
Xl o 1

X2 o

Solving equations £, rj, rf, £ in succession, z x is determined

by a series of square roots.

Effecting the calculations, we see that z x depends upon the

four square roots

Vl7, vV + 4, Vx2
2 + 4, Vyi

2 -4y4.

If we wish to reduce z x to the normal form we must see

whether any one of these square roots can be expressed

rationally in terms of the others.

Now, from the roots of (rj),

Vx!2 + 4= yx
— y3,

Vx2
2 + 4 = y4

— y3 .

Expanding symbolically, we verify that

(yi - y2) (y4 — y*)— 2 (x, - x3),*

* (yi - ya) (y4 - ys) = (13 + 16 + 4 + 1 - 9 - 15 - 8 - 2) (3 + 5 + 14

+ 12-10-11-7-6)
= 16+ 1 + 10+ 8- 6- 7- 3— 2

+ 2+ 4+13+11- 9-10- 6- 5

+ 7 + 9 + 1 + 16-14-15-11-10
+ 4+ 6 + 15 + 13-11-12- 8- 7

- 12 - 14 - 6 - 4 + 2 + 3+16 + 15

- 1- 3-12-10+ 8+ 9+ 5+ 4

-11-13- 5- 3+ 1+ 2 + 15 + 14

- 5 - 7 - 16 - 14 + 12 + 13 + 9 + 8

= 2(16 + l + 8 + 2 + 4+13+lo+9-10-6-7-3-ll-5-14
-12)

= 2(xi - x2).
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that is,

Vx x
2 + 4 Vx2

2 + 4 = 2 Vl7.

Hence Vx2
2 + 4 can be expressed rationally in terms of the

other two square roots. This equation shows that if two of

the three differences y x
— y 2 , y4

— y 3 , xx
— x2 are positive, the

same is true of the third, which agrees with the results ob-

tained directly.

Eeplacing now xl9 ylt y4 by their numerical values, we

obtain in succession

-1 + V17
*i= ö >

_- 1 + Vl7 + V34 - 2 Vl7

— 1 - Vl7 + V34 + 2 Vl7
y4= ,

-•

_— 1 + Vl7 + \/34 - 2 Vl7

J68+12Vl7-16\/34+2Vl7-2(l-Vl7)V34-2Vl7
^

_

The algebraic part of the solution of our problem is now
completed. We have already remarked that there is no known
construction of the regular polygon of 17 sides based upon

purely geometric considerations. There remains, then, only

the geometric translation of the individual algebraic steps.

7. We may be allowed to introduce here a brief historical

account of geometric constructions with straight-edge and

compasses.

In the geometry of the ancients the straight edge and com-

passes were always used together ; the difficulty lay merely in

bringing together the different parts of the figure so as not to
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draw any unnecessary lines. Whether the several steps in

the construction were made with straight edge or with com-

passes was a matter of indifference.

On the contrary, in 1797, the Italian Mascheroni succeeded

in effecting all these constructions with the compasses alone
;

he set forth his methods in his Geometria del compasso, and

claimed that constructions with compasses were practically

more exact than those with the straight edge. As he ex-

pressly stated, he wrote for mechanics, and therefore with a

practical end in view. Mascheroni' s original work is difficult

to read, and we are under obligations to Hutt for furnishing

a brief resume in German, Die Mascheroni''sehen Constructionen

(Halle, 1880).

Soon after, the French, especially the disciples of Carnot,

the author of the Geometrie de position, strove, on the other

hand, to effect their constructions as far as possible with

the straight edge. (See also Lambert, Freie Perspective,

1774.)

Here we may ask a question which algebra enables us to

answer immediately : In what cases can the solution of an

algebraic problem be constructed with the straight edge alone ?

The answer is not given with sufficient explicitness by the

authors mentioned. We shall say :

With the straight edge alone we can construct all algebraic

expressions whose form is rational.

With a similar view Brianchon published in 1818 a paper,

Les applications de la theorie des transversales, in which he shows

how his constructions can be effected in many cases with the

straight edge alone. He likewise insists upon the practical

value of his methods, which are especially adapted to field

work in surveying.

Poncelet was the first, in his Traite des proprieties projectives

(Vol. I, Nos. 351-357), to conceive the idea that it is sufficient

to use a single fixed circle in connection with the straight lines
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of the plane in order to construct all expressions depending

npon square roots, the center of the fixed circle being given.

This thought was developed by Steiner in 1833 in a cele-

brated paper entitled Die geometrischen Constructionen, ausge-

führt mittels der geraden Linie und eines festen Kreises, als

Lehrgegenstand für höhere Unterrichtsanstalten und zum Selbst-

unterricht.

8. To construct the regular polygon of 17 sides we shall

follow the method indicated by von Staudt (Crelle's Journal,

Vol. XXIV, 1842), modified later by Schröter (Crelle's Jour-

nal, Vol. LXXV, 1872). The construction of the regular

polygon of 17 sides is made in accordance with the methods

indicated by Poncelet and Steiner, inasmuch as besides the

straight edge but one fixed circle is used.*

First, we will show how with the straight edge and one fixed

circle we can solve every quadratic equation.

At the extremities of a diameter of the fixed unit circle

(Fig. 4) we draw two tangents, and select the lower as the

axis of X, and the diameter

perpendicular to it as the

axis of Y. Then the equa-

tion of the circle is

Let

x
2 + y(y-2) = 0.

x
2 — px + q =

Fig. 4.

be any quadratic equation

with real roots xx and x2 . Required to construct the roots x x

and x2 upon the axis of X.

Lay off upon the upper tangent from A to the right, a seg-

4
ment measured by -

; upon the axis of X from 0, a segment
P

* A Mascheroni construction of the regular polygon of 17 sides by

L. Gerard is given in Math. Annalen, Vol. XLVIII, 1896, pp. 390-392.
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measured by - ; connect the extremities of these segments by

the line 3 and project the intersections of this line with the

circle from A, by the lines 1 and 2, upon the axis of X. The

segments thus cut off upon the axis of X are measured by x x

and x2 .

Proof. Calling the intercepts upon the axis of X, xx and x2 ,

we have the equation of the line 1, ,

2x + xi (y-2)=0;
of the line 2,

2x + x 2 (y-2) = 0.

If we multiply the first members of these two equations we
get

x2+
x^

x(y _ 2) +
x_^

(y
_ 2)2= ()

as the equation of the line pair formed by 1 and 2. Subtract-

ing from this the equation of the circle, we obtain

^px(y-2) + ^(y-2)*-y(y-2) = 0.

This is the equation of a conic passing through the four

intersections of the lines 1 and 2 with the circle. From
this equation we can remove the factor y — 2, correspond-

ing to the tangent, and we have left

X l "I X 2 I
X 1X2 / r>\ A—y~ x + ~4~ (y

~~ 2
)
~ y = °>

which is the equation of the line 3. If we now make
x i H~ x 2 = P an(i x i x2

= q> we get

^* + j(y-2)-y = 0,

and the transversal 3 cuts off from the line y = 2 the seg-
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4 qment -
, and from the line y = the segment -

,

P P

correctness of the construction is established.

Thus the

9. In accordance with the method just explained, we shall

now construct the roots of our four quadratic equations.

They are (see pp. 29-31)

(£) x
2 + x — 4 = 0, with roots xx and x2 ;

x x > x2,

(v) y
2 ~~ xiY

~~ I = 0, with roots yx and y2 ; y x > y2,

0/) y
2 — x 2y — 1 = 0, with roots y3 and y4 ; y4> y8,

(£) z
2 — yiz + y4= 0, with roots z 1 and z2 ;

z x > z2 .

These will furnish

Zl = 2 cos —

,

whence it is easy to construct the polygon desired. We
notice further that to construct z x it is sufficient to construct

xi? x2> yi? y<t«

We then lay off the following segments : upon the upper

tangent, y = 2,

£ j4 £
x i x2 yi

upon the axis of X,

+
' x,' x,' y/

This may all be done in the following manner : The

straight line connecting the point + 4 upon the axis of X

with the point — 4 upon the tangent y = 2 cuts the circle in
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two points, the projection of which from the point A (0, 2),

the upper vertex of the circle, gives the two roots x 1? x 2 of the

first quadratic equation as intercepts upon the axis of X.

4
To solve the second equation we have to lay off — above

xi

and below.
Xl

To determine the first point we connect x x upon the axis of

X with A, the upper vertex, and from 0, the lower vertex,

draw another straight line through the intersection of this

line with the circle. This cuts off upon the upper tangent

4
the intercept — . This can easily be shown analytically.

x i

The equation of the line from A to x x (Fig. 5),

2x + x xy — 2xl5

and that of the circle,

x
2 + y(y-2) = o,

give as the coordinates of their intersection

4Xl 2x t
2

X!
2 + 4' Xl* + 4'

The equation of the line from through this point becomes

Xi

y=2 x
>

4
3utting off upon y = 2 the intercept —

.

X l

We reach the same conclusion still more simply by the use

)f some elementary notions of projective geometry. By our

construction we have obviously associated with every point x

)f the lower range one, and only one, point of the upper, so

lihat to the point x = oo corresponds the point x' = 0, and con-

versely. Since in such a correspondence there must exist a
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linear relation, the abscissa x' of the upper point must satisfy

the equation const.
x'= .

x

Since x' = 2 when x = 2, as is obvious from the figure, the

constant = 4.

X o +i
«1

Fig. 6.

To determine upon the axis of X we connect the point
x l

— 4 upon the upper with the point + 1 upon the lower tan-

gent (Fig- 6). The point thus determined upon the vertical

4
diameter we connect with the point — above. This line

x i

cuts off upon the axis of X the intercept . For the
x i

line from — 4 to -f- 1,

5y+ 2x= 2,

intersects the vertical diameter in the point (0, §). Hence

4
the equation of the line from — to this point is

x i

5y - 2x xx = 2,

and its intersection with the lower tangent gives .

x i

The projection from A of the intersections of the line from

1 ' 4
to — with the circle determines upon the axis of X the

x i x i

two roots of the second quadratic equation, of which, as
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already noted, we need only the greater, yv This corres-

ponds, as shown by the figure, to the projection of the upper

intersection of our transversal with the circle.

Similarly, we obtain the roots of the third quadratic equa-

tion. Upon the upper tangent we project from the inter-

section of the circle with the straight line which gave upon

the axis of X the root + x2 . This immediately gives the

4 t

intercept — , by reason of the correspondence just explained.

Fig. 7.

If we connect this point with the point where the vertical

diameter intersects the line joining — 4 above and + 1 below,

we cut off upon the axis of X the segment , as desired.
x 2

If we project that intersection of this transversal with the

circle which lies in the positive quadrant from A upon the

axis of X, we have constructed the required root y4 of the third

quadratic equation.

We have finally to determine the root z x of the fourth quad-

4 y
ratic equation and for this purpose to lay off — above and —

below. We solve the first problem in the usual way, by pro-

jecting the intersection of the circle with the line connecting

A with -f- y x below, from upon the upper tangent, thus

4
obtaining—. For the other segment we connect the point

+ 4 above with y4 below, and then the point thus determined
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upon the vertical diameter produced with — . This line cuts

off upon the axis of X exactly the segment desired. — . For

the line a (Fig. 8) has the equation
yi

(y4-4)y + 2x = 2y4 .

4

Fig. 8.

It cuts off upon the vertical diameter the segment •Y4

y4
-4

The equation of the line b is then

2yix + (y4
— 4) y = 2y4 ,

and its intersection with the axis of X has the abscissa —

.

yi

If we project the upper intersection of the line b with the

circle from A upon the axis of X, we obtain z 1 = 2 cos — .

If we desire the simple cosine itself we have only to draw a

diameter parallel to the axis of X, on which our last projecting

ray cuts off directly cos — . A perpendicular erected at this

point gives immediately the first and sixteenth vertices of the

regular polygon of 17 sides.

The period z 1 was chosen arbitrarily ; we might construct

in the same way every other period of two terms and so find

the remaining cosines. These constructions, made on separate

figures so as to be followed more easily, have been combined

in a single figure (Fig. 9), which gives the complete construc-

tion of the regular polygon of 17 sides.



THE REGULAR POLYGON OF 17 SIDES. 41



CHAPTER V.

General Considerations on Algebraic Constructions.

1 . We shall now lay aside the matter of construction with

straight edge and compasses. Before quitting the subject we
may mention a new and very simple method of effecting cer-

tain constructions, paper folding. Hermann Wiener * has

shown how by paper folding we may obtain the network of

the regular polyhedra. Singularly, about the same time a

Hindu mathematician, Sundara Row, of Madras, published a

little book, Geometrical Exercises in Paper Folding (Madras,

Addison & Co., 1893), in which the same idea is consider-

ably developed. The author shows how by paper folding we

may construct by points such curves as the ellipse, cissoid, etc.

2. Let us now inquire how to solve geometrically prob-

lems whose analytic form is an equation of the third or of

higher degree, and in particular, let us see how the ancients

succeeded. The most natural method is by means of the

conies, of which the ancients made much use. For example,

they found that by means of these curves they were enabled

to solve the problems of the duplication of the cube and the

trisection of the angle. We shall in this place give only a

general sketch of the process, making use of the language

of modern mathematics for greater simplicity.

Let it be required, for instance, to solve graphically the

cubic equation
x
a + a)<2+ bx + c = 0>

or the biquadratic,

x
4 +ax3 + bx 2 + cx + d=0.

* See Dyck, Katalog der Münchener mathematischen Ausstellung von

1893, Nachtrag, p. 52.
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Put x
2= y ; our equations become

and

xy + ay + bx + c =
y
2 + axy + by + ex -\- d = 0.

The roots of the equations proposed are thus the abscissas

of the points of intersection of the two conies.

The equation

x2= y

represents a parabola with axis vertical. The second equa-

tion,

xy -f- ay + bx + c = 0,

represents an hyperbola whose asymptotes are parallel to the

axes of reference (Fig. 10). One of the four points of inter-

FlG. 10.

section is at infinity upon the axis of Y, the other three at a

finite distance, and their abscissas are the roots of the equa-

tion of the third degree.

In the second case the parabola is the same. The hyper-

bola (Fig. 11) has again one asymptote parallel to the axis of

X while the other is no longer perpendicular to this axis.

The curves now have four points of intersection at a finite

distance.
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The methods of the ancient mathematicians are given in

detail in the elaborate work of M. Cantor, Geschichte der

Mathematik (Leipzig, 1894, 2d ed.). Especially interesting is

Zenthen, Die Kegelschnitte im Altertum (Kopenhagen, 1886,

in German edition). As a general compendium we may men-

tion Baltzer, Analytische Geometrie (Leipzig, 1882).

3. Beside the conies, the ancients used for the solution of

the above-mentioned problems, higher

curves constructed for this very pur-

pose. We shall mention here only

the Cissoid and the Conchoid.

The cissoid of Diodes (c. 150 b.c.)

may be constructed as follows (Fig.

12) : To a circle draw a tangent (in the

figure the vertical tangent on the right)

and the diameter perpendicular to it.

Draw lines from 0, the vertex of the

circle thus determined, to points upon

the tangent, and lay off from upon

each the segment lying between its

intersection with the circle and the

tangent. The locus of points so deter-

mined is the cissoid.

To derive the equation, let r be the

radius vector, 6 the angle it makes with

the axis of X. If we produce r to the

tangent on the right, and call the diameter of* the circle 1,

The portion cut off by the

Fig. 12.

the total segment equals
cos 6

circle is cos 0.

hence *

The difference of the two segments is r, and

cos 6
cos = sin2

cos 6'
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By transformation of coordinates we obtain the Cartesian

equation,

(x
2 + y

2)x-y2= 0.

The curve is of the third order, has a cusp at the origin,

and is* symmetric to the axis of X. The vertical tangent to

the circle with which we began our construction is an asymp-

tote. Finally the cissoid cuts the line at infinity in the cir-

cular points.

To show how to solve the Delian problem by the use of

this curve, we write its equation in the following form :

We now construct the straight line,

This cuts off upon the tangent x = 1 the segment X, and

intersects the cissoid in a point for which

1 — x

This is the equation of a straight line passing through the

point y = 0, x = 1, and hence of the line joining this point

to the point of the cissoid.

This line cuts off upon the axis of Y the intercept A.
3

.

We now see how 1^2 may be constructed. Lay off upon

the axis of Y the intercept 2, join this point to the point

x = 1, y = 0, and through its intersection with the cissoid

draw a line from the origin to the tangent x = 1. The inter-

cept on this tangent equals f
/
2.

4. The conchoid of Nicomedes (c. 150 b.c.) is constructed

as follows : Let be a fixed point, a its distance from a fixed
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line. If we pass a pencil of rays through and lay off on

each ray from its intersection with the fixed line in both

directions a segment b, the locus of the points so determined

is the conchoid. According as b is greater or less than a,

the origin is a node or a con-

jugate point ; for b = a it is

a cusp (Fig. 13).

Taking for axes of X a

the perpendicular and paral-

lei through to the fixed

line, we have

r_ b

X X — ci

'

whence

(x
2
-fy

2)(x-a)2 -b2
x
2= 0..

The conchoid is then of the

fourth order, has a double

point at the origin, and is

composed of two branches

having for common asymptote

the line x = a. Further, the

factor (x
2+ y

2
) shows that the

curve passes through the cir-

cular points at infinity, a mat-

ter of immediate importance.

We may trisect any angle by means of this curve in the

following manner : Let <£ = MOY (Fig. 13) be the angle to

be divided into three equal parts. On the side OM lay off

OM = b, an arbitrary length. With M as a center and radius

b describe a circle, and through M perpendicular to the axis

of X with origin draw a vertical line representing the

asymptote of the conchoid to be constructed. Construct the

fig. 13.
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conchoid. Connect with A, the intersection of the circle

and the conchoid. Then is /_ AOY one third of /_ <f>,
as is

easily seen from the figure.

Our previous investigations have shown us that the prob-

lem of the trisection of the angle is a problem of the third

degree. It admits the three solutions

<£ <f>-\-2 7r <£ + 4 7r

r ~3~~
* ~~

i

Every algebraic construction which solves this problem by

the aid of a curve of higher degree must obviously furnish all

the solutions. Otherwise the equation of the problem would

not be irreducible. These different solutions are shown in

the figure. The circle and the conchoid intersect in eight

points. Two of them coincide with the origin, two others

with the circular points at infinity. None of these can give

a solution of the problem. There remain, then, four points

of intersection, so that we seem to have one too many. This

is due to the fact that among the four points we necessarily

find the point B such that M B = 2 b, a point which may be

determined without the aid of the curve. There actually

remain then only three points corresponding to the three

roots furnished by the algebraic solution.

5. In all these constructions with the aid of higher alge-

braic curves, we must consider the practical execution. We
need an instrument which shall trace the curve by a con-

tinuous movement, for a construction by points is simply a

method of approximation. Several instruments of this sort

have been constructed ; some were known to the ancients.

Nicomedes invented a simple device for tracing the conchoid.

It is the oldest of the kind besides the straight edge and

compasses. (Cantor, I, p. 302.) 'A list of instruments of

more recent construction may be found in Dyck's Katalog,

pp. 227-230. 340, and Nachtrag, pp. 42, 43.





PART IL

TRANSCENDENTAL NUMBERS AND THE QUADRATURE OF THE

CIRCLE.

CHAPTER I.

Cantor's Demonstration of the Existence of

Transcendental Numbers.

1. Let us represent numbers as usual by points upon the

axis of abscissas. If we restrict ourselves to rational numbers

the corresponding points" will fill the axis of abscissas densely

throughout (überall dicht), i.e., in any interval no matter how
small there is an infinite number of such points. Neverthe-

less, as the ancients had already discovered, the continuum

of points upon the axis is not exhausted in this way ; between

the rational numbers come in the irrational numbers, and the

question arises whether there are not distinctions to be made

among the irrational numbers.

Let us define first what we mean by algebraic numbers.

Every root of an algebraic equation

a <o
n + a^-1

-f • • • + an_l0) + an =
with integral coefficients is called an algebraic number. Of

course we consider only the real roots. Rational numbers

occur as a special case in equations of the form

a w -|- a.i = 0.
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We now ask the question : Does the totality of real

algebraic numbers form a continuum, or a discrete series

such, that other numbers may be inserted in the intervals ?

X These new numbers, the so-called transcendental numbers,

would then be characterized by this property, that they cannot

be roots of an algebraic equation with integral coefficients.

This question was answered first by Liouville (Comptes

rendus, 1844, and Liouville's Journal, Vol. XVI, 1851), and

in fact the existence of transcendental numbers was demon-

strated by him. But his demonstration, which rests upon the

theory of continued fractions, is rather complicated. The

investigation is notably simplified by using the developments

given by Georg Cantor in a memoir of fundamental impor-

tance, lieber eine Eigenschaft des Inbegriffes reeller algebra-

ischer Zahlen (Crelle's Journal, Vol. LXXVII, 1873). We
shall give his demonstration, making use of a more simple

notion which Cantor, under a different form, it is true, sug-

gested at the meeting of naturalists in Halle, 1891.

2. The demonstration rests upon the fact that algebraic

numbers form a countable mass, while transcendental numbers

do not. By this Cantor means that the former can be arranged

in a certain order so that each of them occupies a definite

place, is numbered, so to speak. This proposition may be

stated as follows

:

The manifoldness of real algebraic numbers and the mani-

foldness of positive integers can be brought into a one-to-one

correspondence.

We seem here to meet a contradiction. The positive inte-

gers form only a portion of the algebraic numbers ; since

each number of the first can be associated with one and one

only of the second, the part would be equal to the whole.

This objection rests upon a false analogy. The proposition

that the part is always less than the whole is not true for
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:

12 3

2 4 6
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infinite masses. It is evident, for example, that we may
establish a One-to-one correspondence between the aggregate

of positive integers and the aggregate of positive even num-

2n

In dealing with infinite masses, the words great and small are

inappropriate. As a substitute, Cantor has introduced the

word power (Mächtigkeit), and says : Tivo infinite masses have

the same poiver when they can be brought into a one-to-one cm*-

respondence with each other. The theorem which we have to

prove then takes the following form : The aggregrate of real

algebraic numbers has the same power as the aggregate of

positive integers.

We obtain the aggregate of real algebraic numbers by seek-

ing the real roots of all algebraic equations of the form

a
(>n + a^"- 1 + • • • + a n_lW + a n = ;

all the a's are supposed prime to one another, a positive,

and the equation irreducible. To arrange the numbers thus

obtained in a definite order, we consider their height N as

defined by

N = n-l+|a
l

+ |a 1 |
+ - ' + ,an |,

| ai| representing the absolute value of a
{ , as usual. To a

given number N corresponds a finite number of algebraic

equations. For, N being given, the number n has certainly

an upper limit, since N is equal to n — 1 increased by positive

numbers; moreover, the difference N — (n — 1) is a sum of

positive numbers prime to one another, whose number is

obviously finite.
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N n |a
l

|ax l
|a2 i

|a3 l

|a4 l
Equation. <KN) Roots.

1 1 1 x = 1

2 —

2 1 2

1 1 x± 1 =0
2 -1

+ 1

2 1 —

3 1 3

2

1

1

2

2x±l=0

x±2=0

4 — 2

1

2

-1
2 2

1

1

1

1

-
+ 2

3 1 —

4 1 4

3

2

1

1

2

3

3 x ± 1 =

z±3 =

12 -3
-1.61803
- 1.41421

-0.70711

2 3 — - 0.61803

2 1 — - - 0.33333

2 1 2x2 - 1 =0 + 0.33333

1 2 — + 0.61803

1 1 1 x2 ± x - 1 = + 0.70711

1 2 xz - 2 = + 1.41421

3 2 — + 1.61803

1 1 — + 3

1 1 —
1 1 —

4 1 —

Among these equations we must discard those that are

reducible, which presents no theoretical difficulty. Since

the number of equations corresponding to a given value of
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N is limited, there corresponds to a determinate N only a

finite mass of algebraic numbers. We shall designate this

by <£(N). The table contains the values of </>(l), <£(2), <A(3),

<£(4), and the corresponding algebraic numbers w.

We arrange now the algebraic numbers according to their

height, N, and the numbers corresponding to a single value of

N in increasing magnitude. We thus obtain all the algebraic

numbers, each in a determinate place. This is done in the

last column of the accompanying table. It is, therefore,

evident that algebraic numbers can be counted.

3. We now state the general proposition :

In any portion of the axis of abscissas, however small, there

is an infinite number ofpoints which certainly do not belong to

a given countable mass.

Or, in other words :

The continuum of numerical values represented by a portion

of the axis of abscissas, however small, has a greater power

than any given countable mass.

This amounts to affirming the existence of transcendental

i numbers. It is sufficient to take as the countable mass the

aggregate of algebraic numbers.

To demonstrate this theorem we prepare a table of algebraic

numbers as before and write in it all the numbers in the form

of decimal fractions. None of these will end in an infinite

series of 9's. For the equality

1 = 0.999 9 • ' •

shows that such a number is an exact decimal. If now we
>an construct a decimal fraction which is not found in our

table and does not end in an infinite series of 9's it will

certainly be a transcendental number. By means of a very

simple process indicated by Georg Cantor we can find not

only one but infinitely many transcendental numbers, even
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when the domain in which the number is to lie is very small

Suppose, for example, that the first five decimals of the num-

ber are given. Cantor's process is as follows.

Take for 6th decimal a number different from 9 and from

the 6th decimal of the first algebraic number, for 7th decimal

a number different from 9 and from the 7th decimal of the

second algebraic number, etc. In this way we obtain a decimal

fraction which will not end in an infinite series of 9's and is

certainly not contained in our table. The proposition is then

demonstrated.

We see by this that (if the expression is allowable) there

are far more transcendental numbers than algebraic. For

when we determine the unknown decimals, avoiding the 9's,

we have a choice among eight different numbers ; we can

thus form, so to speak, 8°° transcendental numbers, even when
the domain in which they are to lie is as small as we please.



CHAPTER IL

Historical Survey of the Attempts at the Computation
and Construction of ir.

In the next chapter we shall prove that the number ir

belongs to- the class of transcendental numbers whose exis-

tence was shown in the preceding chapter. The proof was

first given by Lindemann in 1882, and thus a problem was

definitely settled which, so far as our knowledge goes, has

occupied the attention of mathematicians for nearly 4000

years, the problem of the quadrature of the circle.

For, if the number it is not algebraic, it certainly cannot

be constructed by means of straight edge and compasses.

The quadrature of the circle in the sense understood by the

ancients is then impossible. It is extremely interesting to

follow the fortunes of this problem in the various epochs of

science, as ever new attempts were made to find a solution

with straight edge and compasses, and to see how these neces-

sarily fruitless efforts worked for advancement iü the mani-

fold realm of mathematics.

The following brief historical survey is based upon the

excellent work of Eudio : Archimedes, Huygens, Lambert,

Legendre, Vier Abhandlungen über die Kreismessung, Leipzig,

1892. This book contains a German translation of the

investigations of the authors named. While the mode of

presentation does not touch upon the modern methods here

discussed, the book includes many interesting details which

are of practical value in elementary teaching.



56 FAMOUS PROBLEMS.

1. Among the attempts to determine the ratio of the

diameter to the circumference we may first distinguish the

empirical stage, in which the desired end was to be attained by

measurement or by direct estimation.

The oldest known mathematical document, the Ehind

Papyrus (p. 2000 b.c.), contains the problem in the well-

known form, to transform a circle into a square of equal

area. The writer of the papyrus, Ahmes, lays down the

following rule : Cut off £ of a diameter and construct a

square upon the remainder ; this has the same area as the

circle. The value of it thus obtained is (-y-)
2= 3.16 • • •, not

very inaccurate. Much less accurate is the value it = 3,

used in the Bible (1 Kings, 7. 23, 2 Chronicles, 4. 2).

2. The Greeks rose above this empirical standpoint, and

especially Archimedes, who, in his work kvkXov fierpyja-Ls, com-

puted the area of the circle by the aid of inscribed and cir-

cumscribed polygons, as is still done in the schools. His

method remained in use till the invention of the differential

calculus ; it was especially developed and rendered practical

by Huygens (d. 1654) in his work, De circuit magnitudine

inventa.

As in the case of the duplication of the cube and the

trisection of the angle the Greeks sought also to effect the

quadrature of the circle by the help of higher curves.

Consider for example the curve y = sin_1 x, which repre-

sents the sinusoid with axis vertical. Geometrically, ir

appears as a particular ordinate of this curve ; from the

standpoint of the theory of functions, as a particular value of

our transcendental function. Any apparatus which describes

a transcendental curve we shall call a transcendental appara-

tus. A transcendental apparatus which traces the sinusoid

gives us a geometric construction of ir.

In modern language the curve y = sin
-1

x is called an
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integral curve because it can be defined by means of the

integral of an algebraic function,

/dx

Fig. 14.

The ancients called such a curve a quadrairix or Terpaywvi-

t,ovaa. The best known is the quadratrix of Dinostratus

(p. 350 b.c.) which, however, had al-

ready been constructed by Hippias of

Elis (p. 420 b.c.) for the trisectiön of

an angle. Geometrically it may be

defined as follows. Having given a

circle and two perpendicular radii OA
and B, two points M and L move with

constant velocity, one upon the radius

OB, the other upon the arc AB (Fig.

14). Starting at the same time at

and A, they arrive simultaneously at B. The point of inter-

section P of OL and the parallel to OA through M describes

the quadratrix.

From this definition it follows that y is proportional to 0.

7T
Further, since for y = 1, = — we have

and from = tan-1 - the equation of the curve becomes

x
= tan-y.

It meets the axis of X at the point whose abscissa is

x = lim

tan-y
for y = ;
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hence _2_
7T

According to this formnla the radius of the circle is the

mean proportional between the length of the quadrant and

the abscissa of the intersection of the quadratrix with the

axis of X. This curve can therefore be used for the rectifica-

tion and hence also for the quadrature of the circle. This

use of the quadratrix amounts, however, simply to a geo-

metric formulation of the problem of rectification so long as

we have no apparatus for describing the curve by continuous

movement.

Fig. 15 gives an idea of the form of the curve with the

branches obtained by taking values of 6 greater than ir or

Fig. 15.

less than — it. Evidently the quadratrix of Dinostratus is

not so convenient as the curve y = sin
-1

x, but it does not

appear that the latter was used by the ancients.

3. The period from 1670 to 1770, characterized by the

names of Leibnitz, Newton, and Euler, saw the rise of modern

analysis. Great discoveries followed one another in such an

almost unbroken series that, as was natural, critical rigor fell

into the background. For our purposes the development
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of the theory of series is especially important. Numerous

methods were deduced for approximating the value of ir. It

will suffice to mention the so-called Leibnitz series (known,

however, before Leibnitz) :

4
x 3^-5 7

This same period brings the discovery of the mutual depend-

ence of e and tt. The number e, natural logarithms, and

hence the exponential function, are first found in principle in

the works of Napier (1614). This number seemed at first to

have no relation whatever to the circular functions and the

number ir until Euler had the courage to make use of imagi-

nary exponents. In this way he arrived at the celebrated

formula

e^ = cos x + i sin x,

which, for x = tt, becomes

ein = — l.

This formula is certainly one of the most remarkable in all

mathematics. The modern proofs of the transcendence of it

are all based on it, since the first step is always to show the

transcendence of e.

4. After 1770 critical rigor gradually began to resume its

rightful place. In this year appeared the work of Lambert

:

Vorläufige Kenntnisse für die so die Quadratur des Cirkuls

suchen. Among other matters the irrationality of tt is dis-

cussed. In 1794 Legendre, in his Elements de geometrie,

showed conclusively that ir and tt
2 are irrational numbers.

5. But a whole century elapsed before the question was

investigated from the modern point of view. The starting-

point was the work of Hermite : Sur la fonction exponentl

ielle

(Comptes rendus, 1873, published separately in 1874). The

transcendence of e is here proved.



60 FAMOUS PROBLEMS.

An analogous proof for ir9 closely related to that of

Hermite, was given by Lindemann : Ueber die Zahl ir

{Mathematische Annalen, XX, 1882. See also the Proceed-

ings of the Berlin and Paris academies),

The question was then settled for the first time, but tHe

investigations of Hermite and Lindemann were still very

complicated.

The first simplification was given by Weierstrass in the

Berliner Berichte of 1885. The works previously mentioned

were embodied by Bachmann in his text-book, Vorlesungen

über die Natur der Irrationalzahlen, 1892.

But the spring of 1893 brought new and very important

simplifications. In the first rank should be named the

memoirs of Hubert in the Göttinger Nachrichten. Still

Hubert's proof is not absolutely elementary : there remain

traces of Hermite's reasoning in the use of the integral

'

But Hurwitz and Gordan soon showed that this transcen-

dental formula could be done away with {Göttinger Nach-

richten; Comptes rendus ; all three papers are reproduced

with some extensions in Mathematische Annalen, Vol. XLIII).

The demonstration has now taken a form so elementary

that it seems generally available. In substance we shall

follow Gordan' s mode of treatment.



CHAPTER III.

The Transcendence of the Number e.

1. We take as the starting-point for our investigation the

well-known series

e
: = 1+ i+ 2 i

+ -"^+

which is convergent for all finite values of x. The difference

between practical and theoretical convergence should here be

insisted on. Thus, for x = 1000 the calculation of e1000 by

means of this series would obviously not be feasible. Still

the series certainly converges theoretically ; for we easily

see that after the 1000th term the factorial n ! in the

denominator increases more rapidly than the power which

xn

occurs in the numerator. This circumstance that — has for
n!

any finite value of x the limit zero when n becomes infinite

has an important bearing upon our later demonstrations.

We now propose to establish the following proposition :

The number e is not an algebraic number, i.e., an equation

with integral coefficients of the form

F(e)= Co+ C1e+ C2e
2 +- • - + C ne* =

is impossible. The coefficients Q may be supposed prime to

one another.

We shall use the indirect method of demonstration, show-

ing that the assumption of the above equation leads to an

absurdity. The absurdity may be shown in the following
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way. We multiply the members of the equation F (e) = by

a certain integer M so that

MF(e)=MC + MCie + MC2e
2 +' •+MCne

n = 0,

We shall show that the number M can be chosen so that

(1) Each of the products Me, Me2
,

• • -Me11 may be sepa-

rated into an entire part M K and a fractional part eK , and our

equation takes the form

M F(e) = MCo + MA + M 2C2 + "••+ M nCn

+ C iei +C2e2 +• • - + Cnen = 0;

(2) The integral part

MC+MA + - • -+M nCn

is not zero. This will result from the fact that when divided

by a prime number it gives a remainder different from zero

;

(3) The expression

Ciej + C2e2 + ' * • + Cnen

can be made as small a fraction as we please.

These conditions being fulfilled, the equation assumed is

manifestly impossible, since the sum of an integer different

from zero, and a proper fraction, cannot equal zero.

The salient point of the proof may be stated, though not

quite accurately, as follows :

With an exceedingly small error we may assume e, e2
,

• ' ' en

proportional to integers which certainly do not satisfy our

assumed equation.

2. We shall make use in our proof of a symbol h
r and a

certain polynomial <£(x).

The symbol h
r
is simply another notation for the factorial r

!

Thus, we shall write the series for ex in the form

ex = 1 4-
x

:

4- — 4- • • • 4-— 4-e ^ h ^ h
2 ^ ^ h"

^
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The symbol has no deeper meaning ; it simply enables us to

write in more compact form every formula containing powers

and factorials.

Suppose, e.g., we have given a developed polynomial

f(x) = tcrx
r

.

r

We represent by f(h), and write under the form % cr
h r

> the

sum
c1 -l + c1 -2!+ c8 -3!+- ' - + cn -n!

But if f (x) is not developed, then to calculate f (h) is to

develop this polynomial in powers of h and finally replace

h
r by r !. Thus, for example,

f(k + h) = 2 cr(k + h) r = £ c'r
• h

r = £ c'
r

• r!,

r r r

the c'r depending on k.

The polynomial <£(x) which we need for our proof is the

following remarkable expression

,[(1— x)(2— x)- • -Cn — x)p
* (x) = xp-1^ A

(p-l)\

where p is a prime number, n the degree of the algebraic

equation assumed to be satisfied by e. We shall suppose p

greater than n and |C |,
and later we shall make it increase

without limit.

To get a geometric picture of this polynomial <£(x) we con-

struct the curve

y = *«.

At the points x = 1, 2, • • • n the curve has the axis of X as

an inflexional tangent, since it meets it in an odd number of

points, while at the origin the axis of X is tangent without

inflexion. For values of x between and n the curve remains

in the neighborhood of the axis of X ; for greater values of x

it recedes indefinitely.
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Of the function <£ (x) we will now establish three important

properties :

1. x being supposed given and p increasing without limit,

<£(x) tends toward zero, as does also the sum of the absolute

values of its terms.

Put u = x (1 — x) (2 — x) • • • (n — x) ; we may then write

jut \
"^ u

YW ^p— 1)! x

which for p infinite tends toward zero.

To have the sum of the absolute values of <£ (x) it is suffi-

cient to replace — x by |x| in the undeveloped form of <£(x).

The second part is then demonstrated like the first.

2. h being an integer,
<f>

(h) is an integer not divisible by p

and therefore different from zero.

Develop <£ (x) in increasing powers of x, noticing that the

terms of lowest and highest degree respectively are of degree

p — 1 and np + p — 1. We have

r=np+p—

1

, , N ^ C'XP-1
, C''*X

P
,

Xnp+P-1

+(X)=2 c,x-=
7
—
w+

J

—w+. . ±(—

^

r=p-l

Hence
r=np+p—

1

*(h)=2 cjtf.
i^p-1

Leaving out of account the denominator (p — 1) !, which

occurs in all the terms, the coefficients cr are integers. This

denominator disappears as soon as we replace h r by r!, since

the factorial of least degree is h
p_1 = (p — 1) !. All the terms

of the development after the first will contain the factor p.

As to the first, it may be written

(1-2-3- • -n)P-(p-l)! =
Cp
— 1)'

{
'

and is certainly not divisible by p since p > n.

Therefore <£(h) = (n!) p (mod. p),

and hence <j> (h) ^z£ 0.



TRANSCENDENCE OF THE NUMBER e. 65

Moreover, <j> (h) is a very large number ; even its last term

alone is very large, viz.

:

to
T=f^

= p(p + l)...(np + p-l).

3. h being an integer, and k one of the numbers 1, 2 • • • n,

<£ (h + k) is an integer divisible by p.

We have <£ (h + k)= %cT (h + k) r= % c'rh
r

,

r r

a formula in which we are to replace h
r by r ! only after hav-

ing arranged the development in increasing powers of h.

According to the rules of the symbolic calculus, we have

first

r(l-k-h)(2-k-h)---(-h)---(n-k-h)] P

_( ^ (p-1)!

One of the factors in the brackets reduces to — h ; hence the

term of lowest degree in h in the development is of degree p.

We may then write
r=np+p-l

4>(h + k) = 2c'r
h

r
.

r=P

The coefficients still have for numerators integers and for

denominator (p — 1)!. As already explained, this denomi-

nator disappears when we replace h
r by r!. But now all the

terms of the development are divisible by p; for the first

may be written

(— l) kP • kP-1 [(k — 1) I (n - k) !]p • p

!

= (- 1
)
kP kP" 1 [(k - 1) !

• (n - k) !]p • p.

<£ (h + k) is then divisible by p.

3, We can now show that the equation

F<V)=C,-f- C ie + C2e
2 +- • - + Cne" =

is impossible.
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For the number M, by which we multiply the members of

this equation, we select <£ (h), so that

* (h) F (e) = C
<f>

(h) -f Crf (h) e+ C2 </> (h) e
2+ • • • + Cn<£ (h)e*.

Let us try to decompose any term, such as Ck<£ (h) ek, into an

integer and a fraction. We have

ek •

<f>
(h)= ek % c rh

r
.

r

Considering the series development of ek, any term of this

sum, omitting the constant coefficient, has the form

*.h*=h-+— + -2T + - • +Vr +
(
7+i)T + ' '

•

Replacing h
r by r !, or what amounts to the same thing, by one

of the quantities

rh'"
1
, r(r — 1) h'"2 • • •, r(r — 1) • • • 3 • h

2
, r (r— 1) • • -2-h,

and simplifying the successive fractions,

e* h
f= h* + j h'-'k + ' ('~ ^ h"V+ • •+jhk'"1 +kr

+ k'

k

+ •]
.r+ 1 ' (r.+ l)(r + 2)

The fii'st. line has the same form as the development of

(h + k)
r

; in the parenthesis of the second line we have the

series

k k 2

OH — H h- •
•

-r-
r + l-t-(r + l)(r + 2)-r

whose terms are respectively less than those of the series

k
2

,

J<^

3!

The second line in the expansion of ek h r may therefore be

represented by an expression of the form

qr,k'

qrk being a proper fraction.

*= i+ k + +_+...

ek • k\
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Effecting the same decomposition for each term of the sum

ek % c r
h

r

r

it takes the form

ek % crh
r = % cr

(h + ky + ek % q r)kcr
k

r
.

r r r

The first part of this sum is simply <£(h-f k); this is a

number divisible by p (2, 3). Further (2, 1),

*(k)= 2jcr k'j

tends toward zero when p becomes infinite : the same is true

a fortiori of ^q r)k crk
r
, and also, since ek is a finite quantity,

r

of ek Jqr)k c,k
r
, which we may represent by ek .

r

The term under consideration, Cke
k
<£ (h), has then been put

under the form of an integer Ck<£ (h + k) and a quantity Ckek

which, by a suitable choice of p, may be made as small as we
please.

Proceeding similarly with all the terms, we get finally

F(e)<A(h)-C ^(h) + C1cA(h + l)-h- • + Cn* (h + n)

+ CiCi+ C2e2 + • * • + Cnen .

It is now easy to complete the demonstration. All the

terms of the first line after the first are divisible by p ;
for

the first,
|
C

1

is less than p ; <£ (h) is not divisible by p; hence

C <£(h) is not divisible by the prime number p. Consequently

the sum of the numbers of the first line is not zero.

The numbers of the second line are finite in number ; each

of them can be made smaller than any given number by a

suitable choice of p ; and therefore the same is true of their

sum.

Since an integer not zero and a fraction cannot have zero

for a sum, the assumed equation is impossible.

Thus, the transcendence of e, or Hermite's Theorem, is

demonstrated.
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The Transcendence of the Number it.

1. The demonstration of the transcendence of the number

7T given by Lindemann is an extension of Hermite's proof in

the case of e. While Hermite shows that an integral equa-

tion of the form

C + Cie + C2e
2 +- • - + Cne

Q =
cannot exist, Lindemann generalizes this by introducing in

place of the powers e, e2
• • • sums of the form

e
kl + e

k2 +- • - + e
k*

e
11 + e

l2 + • • • + ev

where the k's are associated algebraic numbers, i.e., roots of

an algebraic equation, with integral coefficients, of the degree

N ; the I's roots of an equation of degree N', etc. Moreover,

some or all of these roots may be imaginary.

Lindemann's general theorem may be stated as follows

:

The number e cannot satisfy an equation of the form

(1) C +C 1 (e
kl + e

k2 +- • - + e
k
*)

+ C^e11 + e
12 + • • - + ev)+- • =0

where the coefficients Q are integers and the exponents k
t,

Ij, • •

are respectively associated algebraic numbers.

The theorem may also be stated :

The number e is not only not an algebraic number and there-

fore a transcendental number simply, but it is also not an

interscendental * number and therefore a transcendental number

of higher order.

* Leibnitz calls a function x\ where X is an algebraic irrational, an

interscendental function.
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Let
axN + a^'1 + • • • + aN =

be the equation having for roots the exponents k
t ;

bxN ' + b^'-1 + • • - + bN , =
that having for roots the exponents l

i5
etc. These equations

are not necessarily irreducible, nor the coefficients of the first

terms equal to 1. It follows that the symmetric functions of

the roots which alone occur in our later developments need

not be integers.

In order to obtain integral numbers it will be sufficient to

consider symmetric functions of the quantities

akl9 ak2 ,
* akN ,

bli, bl 2,
• • • bl

ff ., etc.

These numbers are roots of the equations

y
N + axy*"

1 + a 2ay-2 + • • • + a^a*-1 = 0,

y
H'

-f btf*'-
1 + b2by

N'-2 + • • • + b^b*'"1 = 0, etc.

These quantities are integral associated algebraic numbers,

and their rational symmetric functions real integers.

We shall now follow the same course as in the demonstra-

tion of Hermite's theorem. .

We assume equation (1) to be true j we multiply both

members by an integer M ; and we decompose each sum,

such as

M(ekl + e
k2 +- • - + e

kN
),

into an integral part and a fraction, thus

M(ekl + e
k2 +- • + e

ks)=M 1 + c1,

M(ell + e
l2 + - • -+ev)=M 2 + £2,

Our equation then becomes

C M + C 1M 1 + C 8M 2 + - •
•

+ Cl€l + cl +• • - = 0.
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We shall show that with a suitable choice of M the sum of

the quantities in the first line represents an integer not

divisible by a certain prime number p, and consequently

different from zero ; that the fractional part can be made as

small as we please, and thus we come upon the same contra-

diction as before.

2. We shall again use the symbol h
r =r! and select as

the multiplier the quantity M =^(h), where if/(x) is a gene-

ralization of <£(x) used in the preceding chapter, formed as

follows :

«A(x)^
(p

X

l
1)!

[(k 1-x)(k 2 -x)- • (k„-x)]»-a»*-a*'P-a*"P-
;

' [Oi— x) (l 8 — x) • • (lw ,
— x)] p

• b*p • bN
'

p b*"p • •
•

where p is a prime number greater than the absolute value of

each of the numbers

^o? a 5 b, • , aN , bN ,,

•

and later will be assumed to increase without limit. As to

the factors aHp, bN
'

p
,

• • •, they have been introduced so as to

have in the development of i/r(x) symmetric functions of the

quantities

ak 1; ak«, • • \ akN ,

bli, bl 2,
• •, bl,,,

that is, rational integral numbers. Later on we shall have

to develop the expressions

V V

The presence of these same factors will still be necessary if

we wish the coefficients of these developments to be integers

each divided by (p — 1) !.

1. \f/(h) is an integral number, not divisible by p and con-

sequently different from zero.
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Arranging xj/ (h) in increasing powers of h, it takes the form
r=Np+N'p+ • • • +p—

1

iKh) = 2 crh
r
.

r=p-l

In this development all the coefficients have integral numer-

ators and the common denominator (p — 1) !.

The coefficient of the first term h
p_1 may be written

_ lv
(ak x ;

ak2 - akx)
paN

'

paN
"
p

• •
•

• (blx bl2 • • • blN .)
pbNpbN

"
p •

•

(— l)
irp+N'p+ '--(aNa

x-1

)
paN

'

paN
"
p - •(bH .b

N'-1
)
pbspb*"p •

(p-1)!

If in this term we replace h
p_1 by its value (p — 1) ! the

denominator disappears. According to the hypotheses made

regarding the prime number p, no factor of the product is

divisible by p and hence the product is not.

The second term cph
p becomes likewise an integer when

we replace h p by p! but the factor p remains, and so for all

of the following terms. Hence \p (h) is an integer not divis-

ible by p.

2. For x, a given finite quantity, and p increasing ivithout

limit, \\i (x) = J cr
x
r tends toward zero, as does also the sum

r

We may write

<Kx) = 2c r
x
r

= X

_lv
[airay • • •b*bw'(k1 — x)(k2 — x)- -(k x -x)

0-x)(l-x)- • - (U-— x) • • •]'•

Since for x of given value the expression in brackets is a con-

stant, we may replace it by K. We then have

(xK)^ 1

„*«=£=£)!
K

'

a quantity which tends toward zero as p increases indefinitely.
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The same reasoning will apply when each term of if/ (x) is

replaced by its absolute value.

3. The expression J ^(k„ + h) is an integer divisible by p.

We have

•a<-1)P[(k
1 -k,-h)(k2 -k t/

-h)- • -(-h)- • -(kN -k,-h)]P
•a-'Pb-P[(l

1 -k,-h)(l2-kl
,-h)- • •(lw -kJ

,-h)p

The vth factor of the expression in brackets in the second

line is — h, and hence the term of lowest degree in h is h p .

Consequently
r=xp+x'p+ • • +p-l

«Kk„+ h)= 2 c'M
r=p

whence
v=y r=xp+N'p+ • • • +p—

1

2^(k„ + h) = 2 C'r
h r

.

l'=l F=p

The numerators of the coefficients C'r
are rational and integral,

for they are integral symmetric functions of the quantities

akL, ak2 , • • •, akx ,

bli, bl 2,
• • -, blN ,

and their common denominator is (p — 1) !

.

If we replace h r by r ! the denominator disappears from all

the coefficients, the factor p remains in every term, and hence

the sum is an integer divisible by p.

Similarly for

v=\

We have thus established three properties of if/ (x) analogous

to those demonstrated for <£ (x) in connection with Hermite's

theorem.



TRANSCENDENCE OF THE NUMBER n.

3. We now return to onr demonstration that the assumed

equation

(1) C +C 1 (e
kl+ek2+- • •+ e

k
-)+C 2 (e

ll+el2+- • -e
v)+- =0

cannot be true. For this purpose we multiply both members

by «/f(h), thus obtaining

C iA(h)+C1 [e
k
V(h) + e

k
V(h) + - - + e

k
^(h)] + - =0,

and try to decompose each of the expressions in brackets into

a whole number and a fraction. The operation will be a little

longer than before, for k may be a complex number of the form

k= k'+ ik". We shall need to introduce
|

k|=+ Vk'2+ k"
2 -

One term of the above sum is

ek •
tf, (h)= ek % crh

r= % c r
• ek • h

r
.

The product ek • h
r may be written, as shown before,

tk k
2

+
(r+ l)(r+ 2)

The absolute value of every term of the series

k k
2

+
]

+
r+ l

+
(r+ l)(r + 2)

+

is less than the absolute value of the corresponding term in

the series

k k
2

k k
2

Hence

or

+
r+ 1 ' (r + l)(r+ 2)

k k
2

<e' k
'

-n .Pl k l= qr,ke
r+ 1 ' ( r+ l)(r + 2) '

qrk being a complex quantity whose absolute value is less

than 1.

We may then write

ek ' ^(h)= 2 c
r
ek h r= J cr (h + k)

r + % c r q r>k k
r
e'

kl
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By giving k in succession the indices 1, 2, • • • n, and form-

ing the snm the equation becomes

e
k
V(h) + e

k
V(h) + - • •+el

^(h)

="SV (k, + h)+T jeW 2 cJVfcJ-

Proceeding similarly with all the other sums, our equation

takes the form

(2) Co «A (h) 4- dig* (k, + h)+ C^V (|F + h) + • •
•

v=l v=l

+ Ci$te\K\ Clk vqT,K+ c/s'S elV!cr l%q r)li/+ • >=0.
p=l r v=l r

By 2, 2 we can make ^|crk
r

|
as small as we please by taking

r

p sufficiently great. Since
| qrk |

< 1, this will be true a fortiori

of

r

and hence also of

2 2 crk
r

,q r)ke
?=1 r

\K\

Since the coefficients C are finite in value and in number, the

sum which occurs in the second line of (2) can, by increasing

p, be made as small as we please.

The numbers of the first line are, after the first, all divis-

ible by p (3), but the first number, C ^(h), is not (1).

Therefore the sum of the numbers in the first line is not

divisible by p and hence is different from zero. The sum of

an integer and a fraction cannot be zero. Hence equation (2)

is impossible and consequently also equation (1).
#

4. We now come to a proposition more general than the

preceding, but whose demonstration is an immediate conse-

* The proof for the more general case where C = may be reduced

to this by multiplication by a suitable factor, or may be obtained directly

by a proper modification of \p (h).
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quence of the latter. For this reason we shall call it Linde-

mann's corollary.

The number e cannot satisfy an equation of the form

(3) C'o+C'1e
kl +C'2e

ll +- • = <>,

in which the coefficients are integers even when the exponents

k1} \ lf
' • ' are unrelated algebraic numbers.

To demonstrate this, let k2, k3 ,
• • •, kK be the other roots of

the equation satisfied by k x ; similarly for l 2, l 3, •, \s >, etc.

Form all the polynomials which may be deduced from (3)

by replacing kx in succession by the associated roots k2, • •,

l x by the associated roots l 2 ,
• • • Multiplying the expres-

sions thus formed we have the product

a = 1, 2, • • •, n

n JC'o+C'1e*«+C'2e
1
/3 + - ß=l,2,- • -,*•

= Co + Ci (e
kl + e

k2 + h e
k
*)+ C 2 (e

kl+k2+ e
k2+ka+ • • •)

+ C3 (e
kl+ll + e

kl+l2 +' ••)+••

In each parenthesis the exponents are formed symmetrically

from the quantities k
i? 1^ • • •, and are therefore roots of an

algebraic equation with integral coefficients. Our product

comes under Lindemann's theorem; hence it cannot be zero.

Consequently none of its factors can be zero and the corollary

is demonstrated.

We may now deduce a still more general theorem.

The number e cannot satisfy an equation of the form

C<

J>+ C<Pek +.C<?e1 + - • =0
where the coefficients as well as the exponents are unrelated

algebraic numbers.

For, let us form all the polynomials which we can deduce

from the preceding when for each of the expressions C(1)
i
we

substitute one of the associated algebraic numbers

C(2)
, C(

?, • • C {

\ \
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If we multiply the polynomials thus formed together we get

the product

a= l,2,- • , n

0=1,2, • • -,»!

7 = 1, 2, • • •, n2

n äC (

J
) + C (?ek + C (?V+

a, jB.-y, •

= C + Cke
k +C

1
e1 +- •

•

+ Ck>ke
k+k+Ck ,1

ek+1 +- •
•

+
+ >

where the coefficients C are integral symmetric functions of

the quantities

c<>>, qj>, • • •, cv,
c<;>, c<?>, • • •, c<?>,

and hence are rational. By the previous proof such . an

expression cannot vanish, and we have accordingly Linde-

mann's corollary in its most general form :

The number e cannot satisfy an equation of the form

C +C 1e
k+C2e

1 +- • - =
where the exponents k, I, • 'as well as the coefficients C , Ci,

• • • are algebraic numbers.

This may also be stated as follows

:

In an equation of the form

C +C1e
k +C 2e

1 +- • -=
the exponents and coefficients cannot all be algebraic numbers.

5. From Lindemann's corollary we may deduce a number

of interesting results. First, the transcendence of it is an

immediate consequence. For consider the remarkable equa-

tion

1 -f- e
irr = 0.
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The coefficients of this equation are algebraic ; hence the

exponent \ir is not. Therefore, it is transcendental.

6. Again consider the function y = ex . -We know that

1 = e°. This seems to be contrary to our theorems about the

transcendence of e. This is not the case, however. We
must notice that the case of the exponent was implicitly

excluded. For the exponent the function if/(x) would lose

its essential properties and obviously our conclusions would

not hold.

Excluding then the special case (x = 0, y= 1), Lindemann's

corollary shows that in the equation y = ex or x = log
ey, y and

x, i.e., the number and its natural logarithm, cannot be alge-

braic simultaneously. To an algebraic value of x corresponds

a transcendental value of y, and conversely. This is certainly

a very remarkable property.

If we construct the curve y = ex and mark all the algebraic

points of the plane, i.e., all points whose coordinates are alge-

braic numbers, the curve passes among them without meeting

a single one except the point x = 0, y= 1. The theorem still

holds even when x and y take arbitrary complex values. The

exponential curve is then transcendental in a far higher sense

than ordinarily supposed.

7. A further consequence of Lindemann's corollary is the

transcendence, in the same higher sense, of the function

y = sin-1 x and similar functions.

The function y = sin
-1

x is defined by the equation

2 ix = eiy — e~ iy
.

We see, therefore, that here also x and y cannot be algebraic

simultaneously, excluding, of course, the values x = 0, y = 0.

We may then enunciate the proposition in geometric form :

The curve y = sin
-1

x, like the curve y = ex
,
passes through

no algebraic point of the plane, except x= 0, y = 0.



CHAPTER V.

The Integraph and the Gteometric Construction of it.

1. Lindemann's theorem demonstrates the transcendence

of it, and thus is shown the impossibility of solving the old

problem of the quadrature of the circle, not only in the sense

understood by the ancients but in a far more general manner.

It is not only impossible to construct it with straight edge

and compasses, but there is not even a curve of higher order

defined by an integral algebraic equation for which tt is the

ordinate corresponding to a rational value of the abscissa.

An actual construction of ir can then be effected only by the

aid of a transcendental curve. If such a construction is

desired, we must use besides straight edge and compasses

a " transcendental " apparatus which shall trace the curve by

continuous motion.

2. Such an apparatus is the integraph, recently invented

and described by a Russian engineer, Abdank-Abakanowicz,

and constructed by Coradi of Zurich.

This instrument enables us to trace the integral curve

Y=F(x)=/f(x)dx

when we have given the differential curve

y= f(x).

For this purpose, we move the linkwork of the integraph

so that the guiding point follows the differential curve ;
the

tracing point will then trace the integral curve. For a fuller

description of this ingenious instrument we refer to the

original mempir (in German, Teubner, 1889 ; in French,

Gauthier-Villars, 1889).
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We shall simply indicate the principles of its working.

For any point (x, y) of the differential curve construct the

auxiliary triangle having for vertices the points (x, y), (x, 0),

(x— 1, 0); the hypotenuse of this right-angled triangle makes

with the axis of X an angle whose tangent = y.

Hence, this hypotenuse is parallel to the tangent to the inte-

gral curve at the point (X, Y) corresponding to the point (x, y).

fig. ig.

The apparatus should be so constructed then that the trac-

ing point shall move parallel to the variable direction of this

hypotenuse, while the guiding point describes the differential

curve. This is effected by connecting the tracing point with

a sharp-edged roller whose plane is vertical and moves so as to

be always parallel to this hypotenuse. A weight presses this

roller firmly upon the paper so that its point of contact can

advance only in the plane of the roller.

The practical object of the integraph is the approximate

evaluation of definite integrals ; for us its application to the

construction of ir is of especial interest.

3. Take for differential curve the circle

x
2 +y2==r2 .
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the integral curve is then

Y =/ Vr2 - x
2dx = - sin-1 - + £ Vr2 - x

2
.

This curve consists of a series of congruent branches. The

points where it meets the axis of Y have for ordinates

r7r
o, ±

Upon the lines X = ± r the intersections have for ordinates

„7T „3 7T
r
2-> r

2-t-j • •
•

4 4

If we make r= 1, the ordinates of these intersections will

determine the number 7r or its multiples.

It is worthy of notice that our apparatus enables us to

trace the curve not in a tedious and inaccurate manner, but

with ease and sharpness, especially if we use a tracing pen

instead of a pencil.

Thus we have an actual constructive quadrature of the

circle along the lines laid down by the ancients, for our

curve is only a modification of the quadratrix considered

by them.
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